SIDDARTHA INSTITUTE OF ENGINEERING \& TECHNOLOGY:: PUTTUR (AUTONOMOUS)
 Siddharth Nagar, Narayanavanam Road - 517583
 OUESTION BANK (DESCRIPTIVE)

Subject with Code: Design and Analysis of Algorithms (20CS0523)
Course \&Branch: B.Tech - CSE
Year \&Sem : III B.Tech\& II-Sem
Regulation: R20

UNIT -I
 INTRODUCTION, DISJOINT SETS

1	a)	What do you mean by algorithm? List some of the properties of it.	[L1][CO1]	[04M]
	b)	Classify the rules of Pseudo code for Expressing Algorithms.	[L2][CO1]	[08M]
2	Simplify steps involved in performance analysis with example.		[L2][CO1]	[12M]
3	a)	Explain space complexity and time complexity in detail with example.	[L2][CO1]	[08M]
	b)	Illustrate an algorithm for Finding sum of natural number	[L2][CO1]	[04M]
4	What is asymptotic notation? Explain different types of notations with examples.		[L2][CO1]	[12M]
5	Discuss briefly with suitable example about Big ' O ' notation and Theta notation		[L3][CO1]	[12M]
6	a)	Solve the given function If $f(n)=5 n^{2}+6 n+4$ then prove that $f(n)$ is $0\left(n^{2}\right)$.	[L3][CO1]	[04M]
	b)	Explain two types of recurrences in detail with suitable example.	[L2][CO1]	[08M]
7	a)	Apply the Master's theorem to Solve the following Recurrence relations i) $T(n)=4 T(n / 2)+n$ ii) $T(n)=2 T(n / 2)+n \log n$	[L3][CO1]	[06M]
	b)	What is iterative substitution method? Apply the Iterative substitution method to Solve the following Recurrence relations. $\mathrm{T}(\mathrm{n})=2 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}$	[L3][CO1]	[06M]
8	Demonstrate Towers of Hanoi with algorithm and example.		[L3][CO1]	[12M]
9	a)	Define disjoint set. Explain any four types of disjoint sets operations with Examples.	[L2][CO1]	[06M]
	b)	Explain the weighted union algorithm for union algorithm with example.	[L2][CO1]	[06M]
10	a)	Explain the collapsing rule for Find algorithm with example.	[L2][CO1]	[06M]
	b)	Determine steps of Union and Find algorithms with example.	[L5][CO1]	[06M]

UNIT -II
 BASIC TRAVERSAL AND SEARCH TECHNIQUES,DIVIDE AND CONQUER

1	Explain techniques of binary trees with suitable example	[L2][CO2]	[12M]
2	Elaborate BFS algorithm and trace out minimum path for BFS for the following example.	[L6][CO2]	[12M]
3	Explain DFS algorithm and trace out minimum path for DFS for the following example.	[L5][CO2]	[12M]
4	What is connected component and spanning tree? Draw the spanning tree for the following graph using DFS algorithm		
5	a) Compare between BFS and DFS techniques.	[L4][CO2]	[04M]
	b) What is divide and conquer strategy? Write briefly about general method and its algorithm	[L3][CO2]	[08M]
6	What is divide and conquer strategy? Explain the working strategy of Binary Search and find element 60 from the below set by using the above technique: $\{10,20,30,40$, $50,60$, and 70$\}$. Analyze time complexity for binary search.	[L2][CO2]	[12M]
7	Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for given set of numbers $12,3,18,21,4,55,64,77$ and 76 .	[L2][CO2]	[12M]
8	Analyze the working strategy of merge sort and illustrate the process of merge sort algorithm for the given data: $43,32,22,78,63,57,91$ and 13 .	[L4][CO2]	[12M]
9	a) Sort the records with the following index values in the ascending order using quick sort algorithm. $9,7,5,11,12,2,14,3,10,6$.	[L2][CO2]	[6M]
	b) Analyze the time complexity of merge sort using recurrence relation	[L2][CO2]	[6M]
10	Explain the Strassen's algorithm for matrix multiplication and analyze time complexity.	[L5][CO2]	[12M]

UNIT -III
 GREEDY METHOD, DYNAMIC PROGRAMMING

UNIT -IV
 BACKTRACKING,BRANCH AND BOUND

UNIT -V
NP-HARD AND NP-COMPLETE PROBLEMS

Prepared by: Mr. V. Gopi, CSE(SISTK)

