

SIDDARTHA INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

Siddharth Nagar, Narayanavanam Road – 517583

OUESTION BANK (DESCRIPTIVE)

Subject with Code: Design and Analysis of Algorithms (20CS0523) Course & Branch: B.Tech - CSE

Year &Sem: III B.Tech& II-Sem Regulation: R20

UNIT –I INTRODUCTION, DISJOINT SETS

1	a)	What do you mean by algorithm? List some of the properties of it.	[L1][CO1]	[04M]				
	b)	Classify the rules of Pseudo code for Expressing Algorithms.	[L2][CO1]	[08M]				
2	Sin	[L2][CO1]	[12M]					
	a) Explain space complexity and time complexity in detail with example. [L2][C							
3	b)	Illustrate an algorithm for Finding sum of natural number	[L2][CO1]	[04M]				
4	W	[L2][CO1]	[12M]					
5	Di	scuss briefly with suitable example about Big 'O' notation and Theta notation	[L3][CO1]	[12M]				
6	a)	Solve the given function If $f(n) = 5n^2 + 6n + 4$ then prove that $f(n)$ is $O(n^2)$.	[L3][CO1]	[04M]				
	b)	Explain two types of recurrences in detail with suitable example.	[L2][CO1]	[08M]				
7	a)	Apply the Master's theorem to Solve the following Recurrence relations	[L3][CO1]	[06M]				
		i) $T(n) = 4T(n/2) + n$ ii) $T(n) = 2T(n/2) + n\log n$						
	b)	What is iterative substitution method? Apply the Iterative substitution method to	[L3][CO1]	[06M]				
		Solve the following Recurrence relations.						
		T(n) = 2T(n/2) + n						
8	De	emonstrate Towers of Hanoi with algorithm and example.	[L3][CO1]	[12M]				
9	a)	Define disjoint set. Explain any four types of disjoint sets operations with	[L2][CO1]	[06M]				
		Examples.						
	b)	Explain the weighted union algorithm for union algorithm with example.	[L2][CO1]	[06M]				
10	a)	Explain the collapsing rule for Find algorithm with example.	[L2][CO1]	[06M]				
	b)	Determine steps of Union and Find algorithms with example.	[L5][CO1]	[06M]				

UNIT –II BASIC TRAVERSAL AND SEARCH TECHNIQUES,DIVIDE AND CONQUER

1	Explain techniques of binary trees with suitable example	[L2][CO2]	[12M]
2	Elaborate BFS algorithm and trace out minimum path for BFS for the following	[L6][CO2]	[12M]
	example.		
	$(A) \longrightarrow (B) \longrightarrow (C)$		
	G		
	D		
3	Facility DEC also side and decreased activities and for DEC for the full said	[L5][CO2]	[12M]
3	Explain DFS algorithm and trace out minimum path for DFS for the following		[121/1]
	example.		
	H		
	$A \rightarrow B \rightarrow C \rightarrow G$		
4	What is connected component and spanning tree? Draw the spanning tree for the following graph using DFS algorithm		
	Tonowing graph using D13 argorithm		
	A B C		
	G		
5	a) Compare between BFS and DFS techniques.	[L4][CO2]	[04M]
	b) What is divide and conquer strategy? Write briefly about general method and its	[L3][CO2]	[08M]
6	algorithm What is divide and conquer strategy? Explain the working strategy of Binary Search	[L2][CO2]	[12M]
0	and find element 60 from the below set by using the above technique: {10, 20, 30, 40,	լեշյլԵԾՀյ	[141/1]
	50, 60, and 70}. Analyze time complexity for binary search.		
7	Summarize an algorithm for quick sort. Provide a complete analysis of quick sort for	[L2][CO2]	[12M]
	given set of numbers 12, 3, 18, 21, 4, 55, 64, 77 and 76.		
8	Analyze the working strategy of merge sort and illustrate the process of merge sort	[L4][CO2]	[12M]
	algorithm for the given data: 43, 32, 22, 78, 63, 57, 91 and 13.		
9	a) Sort the records with the following index values in the ascending order using quick	[L2][CO2]	[6 M]
	sort algorithm. 9, 7, 5, 11, 12, 2, 14, 3, 10, 6.	[[3][CO3]	[/\]
10	b) Analyze the time complexity of merge sort using recurrence relation Explain the Strassen's algorithm for matrix multiplication and analyze time	[L2][CO2] [L5][CO2]	[6M] [12M]
10	complexity.		[141/1]

UNIT –III GREEDY METHOD, DYNAMIC PROGRAMMING

Explain in detail about general method of greedy method with algorithm and list the few applications of greedy method.							[L2][CO3]	[12M]			
Elaborate job sequencing with deadlines by using greedy method where given the jobs, their deadlines and associated profits as shown below. Calculate maximum earned profit.									[12M]		
	•	Jobs	J1	J2	J3	J4	J5	J 6			
		Deadlines	5	3	3	2	4	2			
		Profits	200	180	190	300	120	100	•		
(Construct an (p1,p2,p3,p4,p5,) (2,3,5,7,1,4,1) by	p6,p7) = (1	10,5,15	5,7,6,18					n=7,M=15 and 4,w5,w6,w7) =		[12M]
a	a) Simplify the	algorithm for I	Knapsa	ick pro	blem a	nd ana	lyze tiı	ne con	nplexity.	[L4][CO3]	[6M]
t	What is min kruskals algo	-	nning	tree ar	nd writ	the a	lgorith	ım of j	pseudo code for	[L3][CO3]	[6M]
			ree of	the fol	lowing	graph	using	Kruska	als algorithm and	[L3][CO3]	[12M]
	prims algorithm		8		7						
		4 B		(c)		(d)	9				
		a 11	, (i).			1	⁴ e)			
		8		, a			10				
a Write short notes about general method of dynamic programming.									[L3][CO3]	[3M]	
a Write short notes about general method of dynamic programming.b Build any one application of dynamic programming with an example.									[L6][CO1]	[9M]	
Discuss about Optimal binary search tree with suitable example.									[L2][CO3]	[12M]	
Explain 0/1 knapsack problem by using dynamic programming with an examples.									[L2][CO3]	[12M]	
Construct an algorithm for All pairs of shortest path and calculate shortest path between all pairs of vertices by using dynamic programming method for the following graph.									[L6][CO3]	[12M]	
an pairs of vertices by using dynamic programming method for the following graph.											
Q 4 2											
8 12											
5 5											
4 3									[I 4][CO2]	[12]	
Analyze the minimum cost tour for given problem in travelling sales person Concepts b									[L4][CO3]	[12M]	
using dynamic programming.											
1 10 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1											
		6 1	5	20	13		10	2			

UNIT –IV BACKTRACKING,BRANCH AND BOUND

1	Distinguish in detail 8-queens	[L4][CO4]	[12M]						
2	Explain sum of subsets by usi	[L5][CO4]	[12M]						
3	a) Recall the graph coloring.	[L5][CO4]	[9M]						
3	b) Discuss about General me	[L3][CO4]	[3M]						
4	Discuss the Hamiltonian cycle	[L6][CO4]	[12M]						
5	Give brief description about the	[L2][CO4]	[6M]						
6	Find the LC branch and bou cost matrix is as follows:	[L4][CO4]	[12M]						
	1	000	20	30	10	11			
	2	15	00	16	4	2			
	3	3	5	∞	2	4			
	4	19	6	18	∞	3			
	5	16	4	7	16	∞_			
	Simplify 0/1 knapsack proble							[L4][CO4]	[12M]
7	find the solution for the knapsack instance of $n = 4$, $(p1, p2, p3, p4) = (10, 10, 12, 18)$, $(2, 4, 6, 0)$ and $M = 15$								
8	(w1,w2, w 3, w4) = (2, 4, 6, 9) and M = 15. Construct the LC branch and bound search. Consider knapsack instance n=4 with								[12M]
	capacity M=15 such that pi=	•	[L6][CO4]						
	boundtechnique.								
9	a) Explain the principles of	FIFO l	brancl	n and l	ound.			[L2][CO4]	[6M]
	b) Explain the principles of	LIFO I	brancl	h and l	bound.			[L2][CO4]	[6M]
10	Implement any one branch an	ample.	[L3][CO4]	[12M]					

UNIT –V NP-HARD AND NP-COMPLETE PROBLEMS

1	Explain the following	[L2][CO5]	[12M]
	i) P class		
	ii) NP class		
	iii) NP complete		
	iv) NP Hard		
	v) Non-deterministic problem		
2	Construct the non-deterministic algorithms with suitable example.	[L3][CO5]	[12M]
3	Build the non-deterministic sorting algorithm and also analyze its complexity.	[L6][CO5]	[12M]
4	Determine the classes NP-hard and NP-complete problem with example.	[L5][CO5]	[12M]
5	State and explain cook's theorem.	[L2][CO5]	[12M]
6	Illustrate the satisifiability problem and write the algorithm.	[L2][CO5]	[12M]
7	Explain Reduction source problem With example.	[L4][CO5]	[12M]
8	Explain the following:	[L4][CO5]	[12M]
	(a) decision problem		
	(b) clique		
	(c) non deterministic machine		
	(d) satisfiability		
9	How to make reduction for 3-sat to clique problem? and Explain	[L3][CO5]	[12M]
10	a) Statement the following with examples	[L4][CO5]	[6M]
	a) Optimization problem		
	b) Decision problem		
	b) Explain and shows the relationship between P,NP,NP Hard and NP Complete with	[L3][CO5]	[6M]
	neat diagram		

Prepared by: Mr. V. Gopi, CSE(SISTK)